
Lecture 2 Examples

October 21, 2019

1 Data types

Our program processes data, and everything it does or uses is stored in computer’s memory.
Basic data types allow for declaration of variables and allocation of necessary resources (space in
memory).

• Used to declare variables or define functions.
• Determine size the variable occupies in memory.
• Need format specifiers to print with printf().

We will discuss some (of many) data types. Integers, Floats, Characters and bools.

1.1 int

Used for storing integers (2, 6, 676, -1000 are integers and 4.5 is not). Use int keyword to define.
Nowdays ints occupy 4B.

Format specifiers for printf(): * %d %i - signed integer (%li %ld for long). * %o - Octal integer.
* %x %X - Hex integer. * %u - unsigned integer.

Let’s start with the following example:

In [52]: # include <stdio.h>

int main()
{

printf("Storage size for int : %ld B \n", sizeof(int)); // Prints the size of int

int a = 20;
printf("in decimal representation a=%d \n", a);
printf("in octal representation a=%o \n", a);
printf("in hexadecimal representation a=%x \n", a);

}

Storage size for int : 4 B
in decimal representation a=20
in octal representation a=24
in hexadecimal representation a=14

1

There is a limit to the size of integer that can be stored before the 4B of memory designed to
store the integer overflows. For 32 integers (4B is 32 b - as in bits) is int is in the range: (-2147483647
- 1, 2147483647)

In [11]: # include <stdio.h>

int main()
{

printf("Storage size for int : %ld B \n", sizeof(int));

int a = 320*350*360*555;
printf("a =%d \n ", a);

}

/tmp/tmpd1jn53ux.c: In function main:
/tmp/tmpd1jn53ux.c:7:24: warning: integer overflow in expression [-Woverflow]

int a = 320*350*360*555;
ˆ

Storage size for int : 4 B
a =902763520

• Note: We habe been warned by the compiler that our operation will overflow the int! It does
not always has to be so outspoken!

• Note2: The acctual value should be: 22377600000

1.1.1 Operations:

We can perform arithmetic operations on integers. We cann add (+), substract (-), multiply (*) and
divide (/). We can also request remainder of the divison with %. See an example:

In [1]: # include <stdio.h>

int main()
{

int a, b; //uninitialized variables, have any value
a = 5;
b = 6;

printf("a=%d b=%d\n ", a, b);
printf("%d+%d = %d\n ", a, b, a+b);
int c = a - b;
printf("%d-%d = %d\n ", a, b, c);

c = a*b;
printf("%d*%d = %d\n ", a, b, c);
printf("%d/%d = %d\n ", a, b, a/b); //risk of loosing data

2

printf("1/2=%d\n", 1/2);

a = 10;
b = 7;
printf("%d %% %d = %d\n ", a, b, a%b);

}

a=5 b=6
5+6 = 11
5-6 = -1
5*6 = 30
5/6 = 0
1/2=0

10 % 7 = 3

You might have noticed that division gives strange results. That is 5/6=0! The reason is that
the integer only stores the integral value of a number and for this case it would be 0. So rmember
1/2 is 0! since both 1 and two are integers.

1.2 Floats and doubles

Are used to store floating point numbers, such as 14.35 or 5.4 or any other. We will get to know
two: * floats that occupy 4B * doubles that take 8B

To print them use: * %lf for doubles and %f for floats * %e or %E for scientyfic notation usefull
for small and large values

In [25]: # include <stdio.h>

int main()
{

printf("Storage size for int : %ld B \n", sizeof(double));
double a = 45887654.87863587358635987365897;
printf("a= %lf \n", a);
printf("a= %e \n", a);
double b = 0.000000000000002374274278;
printf("a= %lf \n", b);
printf("a= %e \n", b);

}

Storage size for int : 8 B
a= 45887654.878636
a= 4.588765e+07
a= 0.000000
a= 2.374274e-15

Similarly to ints floating point numbers allow for addition (+), substraction (-), multiplication
(*) and division (/):

3

In [2]: # include <stdio.h>

int main()
{

double a = 4.56, b=9.345;

printf("a=%lf b=%lf\n", a, b);
printf("%lf+%lf = %lf\n", a, b, a+b);
printf("%lf-%lf = %lf\n", a, b, a-b);
printf("%lf*%lf = %lf\n", a, b, a*b);
printf("%lf/%lf = %lf\n", a, b, a/b);

}

a=4.560000 b=9.345000
4.560000+9.345000 = 13.905000
4.560000-9.345000 = -4.785000
4.560000*9.345000 = 42.613200
4.560000/9.345000 = 0.487961

1.3 Data casting

Now that we know two data types, we can try to change the way data is treated by means of
casting.

Consider the following:

In [10]: # include <stdio.h>

int main()
{

int a = 4, b=9;

printf("%d %d %d\n", a, b, a/b);
printf("%d %d %lf\n", a, b, (double)a/b); // cast a into a double
printf("%d\n", 1/2);
printf("%lf\n", 1./2.);

}

4 9 0
4 9 0.444444
0
0.500000

What happens there?
1) So in line 7 we try to print a result of division of two ints. Since both operands are of type int
the result is assumed to be of the same type. The operation cuts out any decimal part and only the
integral part is left. That is why we see a zero.

4

2) In line 8 we perform an explicit cast by adding (double) to one of the variables (we write (dou-
ble)a/b) this informs the complier that the result should be treated as a double. This way we see
a rpoper result.
3) In lines 9 and 10 we print the result of 1/2, please note that adding a ’.’ changes the type from
int to double! so 1 - an integer, but 1. - a double!

1.4 Characters

Our next data type are characters. Those are used to store just that, characters. Those are 1B in
size and can be interpreted as integers or symbols. Have a look here: ASCI table for an ASCI table,
that is a translator from integer to a character kind of thing.

(ASCI - American Standard Code for Information Interchange)

In [48]: # include <stdio.h>

int main()
{

char a = 'b';
printf("%c\n", a);
printf("%d\n", a);

a = 52;
printf("%c\n", a);
printf("%d\n", a);

a = 32;
printf("%c\n", a);
printf("%d\n", a);

}

b
98
4
52

32

1.5 bool

Used to represent logical value of true and false. Introduced into C in C99 standard. in order to use
stdbool.h needs to be included. Use %d format specifier to print.

The example below illustrates declaration of a boolean variable, assigment and printing.

In [38]: # include <stdio.h>
include <stdbool.h>

int main(){
printf ("Storage size for char : %ld B \n" , sizeof(bool));

5

http://www.asciitable.com/
https://en.wikipedia.org/wiki/ASCII

bool a = true;
printf ("a=%d \n" , a);

a = false;
printf ("a=%d \n" , a);

}

Storage size for char : 1 B
a=1
a=0

1.6 Void

Void is a special type that represents nothing. That is a lot, I hope you agree? It is used to dis-
tinguish functions that return no value and therfore are void. Variables of this type can not be
declared! We will be having a look at void type when we get to work with functions and pointers.

In [40]: # include <stdio.h>

void main(){
printf(" Storage size for void : %ld B \n" , sizeof (void)) ;
//void a ; // variables of type void are not allowed
//printf (" %d \n" , a) ;

}

Storage size for void : 1 B

[C kernel] Executable exited with code 30

1.7 Data assigment, data loss and casting

Mixing of types should be, if possible avoided. If necessary it should be done with care.
Here we interpret a doble as an in tne than back again. As a result we suffer data loss since the
output vale is not what it originally was. It is possible that your compiler will complain with a
warning.

In [41]: # include <stdio.h>

int main(){
double x1 = 6.28;
int a = 2;
printf("%d %lf \n", a, x1);
a = x1; // loss of data since a =6!
printf("%d %lf \n", a, x1);
x1 = a;
printf("%d %lf \n", a, x1);

}

6

2 6.280000
6 6.280000
6 6.000000

And here we do the same, but "more consciously", i.e we perform a data cast we have seen
earlier.

In [42]: # include <stdio.h>

int main(){
double x1 = 6.28;
int a = 2;
a = (int) x1; // loss of data , but no warning
printf("%d %lf \n", a, x1);
x1 = (double) 2/3; // x1 is not zero since I use a cast
printf("%d %lf \n", a, x1);

}

6 6.280000
6 0.666667

1.8 Precedence of operators

It is simple. More less what you know from your math class about the order of wxecution. So
brackets () before multiplication, sumation/substraction and so on. There can be some new con-
cepts on the way though.

In [44]: # include <stdio.h>

int main(){
double a = 6, b = 9;
double c = (a+b) / a + b / (a * b);
//double c = (a+b) / a + b / a * b; // it is different!
printf("%lf \n", c);

}

2.666667

1.9 Increment / decrement

C offers some operators that are good to know. Incrementation ++ and decrementation -- operators
increase or decrease int value by 1. Consider the folloing:

In [45]: # include <stdio.h>

int main(){

7

int a = 1;
printf("%d \n", a);
++a;
printf("%d \n", a);
++a;
printf("%d \n", a);
++a;
printf("%d \n", a);
++a; // a = a + 1;
printf("%d \n", a);

--a;
printf("%d \n", a);
--a;
printf("%d \n", a);
--a;
printf("%d \n", a);
--a;
printf("%d \n", a);
--a;
printf("%d \n", a);
--a;
printf("%d \n", a);

}

1
2
3
4
5
4
3
2
1
0
-1

and:

In [46]: # include <stdio.h>

int main(){
int a = 1;
printf("%d \n", a);
a++;
printf("%d \n", a);
a++;

8

printf("%d \n", a);

a--;
printf("%d \n", a);
a--;
printf("%d \n", a);

}

1
2
3
2
1

There are two versions of those operators and apparently the two do the same. But there
is a difference. The ++a is called prefix and a++ the postfix. The first is performed first and than
passed for possible assigment. The second is first passed for assigment and only than incremented.
Consider the two examples and note the resulting values:

In [47]: # include <stdio.h>

int main(){
int a = 1;
int b = ++a; // first increment than copy
printf("%d %d\n", a, b);

}

2 2

In [48]: # include <stdio.h>

int main(){
int a = 1;
int b = a++; // first copy than increment
printf("%d %d\n", a, b);

}

2 1

We note that it is better to use the prefix version sice it only invikes coping the value, while the
postfix requiers first to create a copy that is passed and than the increamentation, which in case of
composite data types can be expensive.

1.10 Compound Assignment Operators += -= *= /= Onother type of operators are the
compound operators. Those are used to replace operation with the assigment.
Such as a = a + b. Consider the following:

In [49]: # include <stdio.h>

9

int main(){
int a = 1;
int b = 2;
a += b; // a = a + b;
printf("%d %d\n", a, b);

}

3 2

In [50]: //%cflags:-lm

include <stdio.h>

int main(){
double a = 3.14;
double b = 2.73;
a *= b; // a = a * b;
printf("%lf %lf\n", a, b);

}

8.572200 2.730000

10

	Data types
	int
	Operations:

	Floats and doubles
	Data casting
	Characters
	bool
	Void
	Data assigment, data loss and casting
	Precedence of operators
	Increment / decrement
	Compound Assignment Operators += -= *= /= Onother type of operators are the compound operators. Those are used to replace operation with the assigment. Such as a = a + b. Consider the following:

